วันพฤหัสบดีที่ 22 กันยายน พ.ศ. 2554

สนามแม่เหล็ก

              สนามไฟฟ้าและสนามแม่เหล็ก (Electric and Magnetic Field: EMFs) จะหมายถึง
เส้นสมมุติที่เขียนขึ้นเพื่อแสดงอาณาเขตและความเข้มของเส้นแรงที่เกิดขึ้นระหว่างวัตถุที่มี
ความแตกต่างของศักย์ไฟฟ้าหรือแรงดันไฟฟ้า (เรียกว่า สนามไฟฟ้า) และที่เกิดขึ้นโดยรอบ
วัตถุที่มีกระแสไฟฟ้าไหล (เรียกว่า สนามแม่เหล็ก) ในกรณีกล่าวถึงทั้ง สนามไฟฟ้าและ
สนามแม่เหล็กพร้อมกันมักจะเรียกรวมว่า สนามแม่เหล็กไฟฟ้า (Electromagnetic Field: EMF)
หรือ คลื่นแม่เหล็กไฟฟ้า สนามไฟฟ้าและสนามแม่เหล็กสามารถเกิดขึ้นได้ 2 ลักษณะคือ
1) เกิดขึ้นเองตามธรรมชาติ ได้แก่ สนามแม่เหล็กโลก
     คลื่นรังสีจากแสงอาทิตย์   คลื่นฟ้าผ่า  คลื่นรังสีแกมมา
     เป็นต้น
2) เกิดขึ้นจากการสร้างของมนุษย์   แบ่งออกได้เป็น
     2 ชนิด คือ

- แบบจงใจ  คือสนามแม่เหล็กไฟฟ้าที่จงใจ
สร้างให้เกิดขึ้นโดยมีวัตถุประสงค์หลักที่จะใช้
ประโยชน์โดยตรงจากคลื่นสนามแม่เหล็กไฟฟ้า
ที่สร้างขึ้นนี้ เช่น ให้สามารถส่งไปได้ในระยะ
ไกลๆ ด้วยการส่งสัญญาณของระบบสื่อสาร
สัญญาณเรดาร์  คลื่นโทรศัพท์  คลื่นโทรทัศน์
และ คลื่นวิทยุ และการใช้คลื่นไมโครเวฟ
ในการให้ความร้อน เป็นต้น
 
- แบบไม่จงใจ  คือสนามแม่เหล็กไฟฟ้า
ที่เกิดจากการใช้งานอุปกรณ์  โดยไม่ได้มี
วัตถุประสงค์หลักที่จะใช้ประโยชน์
โดยตรงจากสนามแม่เหล็กไฟฟ้าที่เกิดขึ้น
เช่น ระบบส่งจ่ายกำลังไฟฟ้า (สายส่งไฟฟ้า)
รวมถึงอุปกรณ์เครื่องใช้ไฟฟ้า เป็นต้น

 สนามแม่เหล็กไฟฟ้ายังสามารถแบ่ง
ออกเป็น     สนามแม่เหล็กไฟฟ้าสถิต
ที่ไม่มีการเปลี่ยนตามเวลา (Static Field หรือ
DC Field) ตัวอย่างเช่น  สนามไฟฟ้าระหว่าง
ก้อนเมฆกับพื้นโลก    สนามแม่เหล็กจาก
แม่เหล็กถาวร  สนามแม่เหล็กโลก เป็นต้น


สนามแม่เหล็กที่เกิดขึ้น
รอบแท่งแม่เหล็กถาวร


                ส่วนอีกประเภทคือสนามแม่เหล็กไฟฟ้าที่มีการเปลี่ยนตามเวลา (Dynamic Field หรือ
AC Field) ตัวอย่างเช่น สนามแม่เหล็กไฟฟ้าที่เกิดจากระบบการส่งจ่ายกำลังไฟฟ้ากระแสสลับ
(50 Hz) และ ระบบสื่อสาร เป็นต้น

สนามแม่เหล็กไฟฟ้าที่เกิดจากระบบการส่งจ่ายกำลังไฟฟ้า
เป็นเพียงส่วนหนึ่งของแถบคลื่นความถี่ของคลื่นแม่เหล็กไฟฟ้า
(Electromagnetic Spectrum) ซึ่งแถบคลื่นความถี่นี้จะเป็นตัวบอกถึง
ระดับพลังงานของคลื่นแม่เหล็กไฟฟ้า (Electromagnetic Energy
หรือ Photon Energy) โดยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูงจะมี
ระดับของพลังงานสูง และ คลื่นแม่เหล็กไฟฟ้าที่มีความถี่ต่ำก็จะมี
ระดับของพลังงานที่ต่ำ
         แถบคลื่นความถี่ของคลื่นแม่เหล็กไฟฟ้าเรียงลำดับความถี่จากสูงไปสู่ต่ำ เป็นดังนี้   รังสีคอสมิก   รังสีแกมมา    รังสีเอ็กซ์
แสงอาทิตย์  คลื่นความร้อน   คลื่นไมโครเวฟ    คลื่นวิทยุ   และ สนามแม่เหล็กที่เกิดจากกระแสไฟฟ้า ดังแสดงในรูป
         อย่างไรก็ตาม สนามแม่เหล็กที่เกิดจากกระแสไฟฟ้าเป็น
เพียงส่วนหนึ่งของแถบความถี่ของคลื่นแม่เหล็กไฟฟ้าที่มีความ
แตกต่างกันอย่างมากเมื่อเทียบกับรังสีแกมมาซึ่งมีความถี่อยู่ในย่าน
การแผ่รังสีคลื่นแม่เหล็กไฟฟ้าที่ทำให้เกิดไอออน (Ionization
Radiation) [1] และสามารถทำลายการยึดเหนี่ยวของโมเลกุลได้
นั่นหมายความว่ารังสีแกมมาและการแผ่รังสีคลื่นแม่เหล็กไฟฟ้าที่ทำให้เกิดไอออนสามารถ
ทำลายส่วนต่างๆ ของดีเอ็นเอ (DNA) และการได้รับรังสีชนิดนี้สามารถนำไปสู่โรคมะเร็งได้
         คลื่นแม่เหล็กไฟฟ้าที่มีแถบคลื่นความถี่ที่ต่ำลงมา ระดับพลังงานของคลื่นแม่เหล็ก
ไฟฟ้าก็จะมีค่าลดลง ตัวอย่างเช่น คลื่นไมโครเวฟ ซึ่งมีพลังงานไม่เพียงพอที่จะทำลาย
การยึดเหนี่ยวของโมเลกุลได้ อย่างไรก็ตามการได้รับการแผ่รังสีของคลื่นไมโครเวฟที่มีค่าสูง
โดยตรงสามารถทำให้เกิดความร้อนได้เช่นเดียวกับการทำให้อาหารสุกโดยใช้ เตาไมโครเวฟ
         สนามแม่เหล็กที่เกิดจากกระแสไฟฟ้า มีความถี่อยู่บนแถบคลื่นความถี่ของคลื่น
แม่เหล็กไฟฟ้าในย่านความถี่ต่ำมาก [2] สนามแม่เหล็กจากเครื่องใช้ไฟฟ้าและสายส่งไฟฟ้านั้น
มีระดับพลังงานของคลื่นแม่เหล็กไฟฟ้าน้อยมากๆ ซึ่งไม่เพียงพอที่จะทำลายการยึดเหนี่ยว
ของโมเลกุลได้
         แต่อย่างไรก็ดี เซลล์ร่างกายคนเราสามารถตอบสนองกับสนามแม่เหล็กไฟฟ้าที่มี
พลังงานต่ำด้วย ในกรณีที่ขนาดของสนามแม่เหล็กไฟฟ้านั้นมีค่าสูง ซึ่งปฏิกิริยาเหล่านี้
จะเป็นปฏิกิริยาทางอ้อม (ผลกระทบทางกายภาพ) โดยยังไม่มีหลักฐานที่แสดงให้เห็นว่า
ผลกระทบทางอ้อมนี้จะก่อให้เกิดปัญหาเกี่ยวกับสุขภาพ



















ฟลักซ์แม่เหล็ก คือ ปริมาณเส้นแรงแม่เหล็ก หรือจำนวนของเส้น แรงแม่เหล็ก ใช้สัญลักษณ์
ความเข้มสนามแม่เหล็ก (B) หมายถึง จำนวนเส้นแรงแม่เหล็กต่อ หน่วยพื้นที่ที่เส้นแรงแม่เหล็กตกตั้งฉาก
               
 B = ความเข้มของสนามแม่เหล็ก มีหน่วยเป็น Tesla(T)หรือ Wb/m2
 = ฟลักซ์แม่เหล็ก มีหน่วยเป็น Weber (Wb)
 A = พื้นที่ที่ตกตั้งฉาก มีหน่วยเป็น ตารางเมตร (m2)



 
    

การนำความรู้เรื่องความเร่งไปใช้ประโยชน์

        ความเร่ง คือ อัตราการเปลี่ยนแปลงของความเร็ว เป็นปริมาณเวกเตอร์ที่มีหน่วยเป็น ความยาว/เวลา² ในหน่วยเอสไอกำหนดให้หน่วยเป็น เมตร/วินาที²
            ในการเคลื่อนที่ของวัตถุ บางช่วงเวลาวัตถุจะมีความเร็วคงตัว ซึ่งหมายถึงขนาดของความเร็วและทิศการเคลื่อนที่ของวัตถุไม่เปลี่ยนแปลง ความเร็วของวัตถุจะเปลี่ยนเมื่อมีการเปลี่ยนขนาดของความเร็ว หรือมีการเปลี่ยนทิศ หรือมีการเปลี่ยนทั้งขนาดและทิศของความเร็ว โดยจะเรียกว่าวัตถุมีความเร่ง
            เนื่องจากความเร็วที่เปลี่ยนไปเป็นปริมาณเวกเตอร์ ดังนั้นความเร่งจึงเป็นปริมาณเวกเตอร์ โดยมีทิศเดียวกับทิศของความเร็วที่เปลี่ยนไป ความเร่งเฉลี่ยในช่วงเวลาสั้น ๆ จะเป็นความเร่งขณะหนึ่ง ซึ่งถ้าวัตถุเคลื่อนที่ด้วยความเร่งขณะหนึ่งเท่ากันตลอดการเคลื่อนที่ ก็จะถือได้ว่าวัตถุนั้นเคลื่อนที่ด้วยความเร่งคงตัว


หรือ

             ความเร่งขณะหนึ่ง คือ ความเร่งในช่วงเวลาสั้น ๆ ในกรณีที่เราหาความเร่ง เมื่อ t เข้าใกล้ศูนย์ ความเร่งขณะนั้นเราเรียกว่าความเร่งขณะหนึ่ง

             ถ้าข้อมูลเป็นกราฟ หาได้จาก slope ของเส้นสัมผัส











การนำความรู้เรื่องความเร่งไปใช้

จรวด (Rocket)
 
จรวดหลายตอน
              การนำจรวดขึ้นสู่อวกาศนั้นจะต้องทำการเผาไหม้เชื้อเพลิงจำนวนมาก เพื่อให้เกิดความเร่งมากกว่า 9.8 เมตร/วินาที2 หลายเท่า ดังนั้นจึงมีการออกแบบถังเชื้อเพลิงเป็นตอนๆ เราเรียกจรวดประเภทนี้ว่า “จรวดหลายตอน”(Multistage rocket) เมื่อเชื้อเพลิงตอนใดหมด ก็จะปลดตอนนั้นทิ้ง เพื่อเพิ่มแรงขับดัน (Force) โดยการลดมวล (mass) เพื่อให้จรวดมีความเร่งมากขึ้น (กฎของนิวตัน ข้อที่ 2: ความเร่ง = แรง / มวล)


          ความรู้เรื่องความเร่งได้ถูกนำไปใช้ในเรื่องความปลอดภัยของการใช้ยานพาหนะ เช่น เข็มขัดนิรภัย ที่มีอุปกรณ์พิเศษที่สามารถล็อกตัวเองได้เมื่อเกิดอุบัติเหตุ เช่น รถชนกัน ขณะนั้นความเร็วของรถจะลดลงเป็นศูนย์อย่างรวดเร็ว ทำให้ความเร่ง (เป็นลบ) สูงมากพอที่จะทำให้อุปกรณ์พิเศษสามารถล็อกเข็มขัดนิรภัยไม่ให้ร่างกายผู้ที่สวมอยู่กระเด็นไปชนกระจกหน้า หรือหลุดกระเด็นออกจากตัวรถ
        
          นอกจากนั้น ถุงลมนิรภัยยังทำงานเมื่อเกิดอุบัติเหตุอย่างรุนแรง เช่น รถชนกัน ขณะนั้นความเร็วของรถจะลดลงเป็นศูนย์อย่างรวดเร็ว ทำให้ความเร่ง (เป็นลบ) สูงมากพอที่จะทำให้สวิตช์อุปกรณ์พิเศษของถุงลมนิรภัยทำงาน ป้องกันอันตรายให้กับผู้ขับขี่และผู้โดยสาร   


           ความเร่งยังสามารถนำไปใช้ในชีวิตประจำวันในเรื่องของการขับรถ ขณะที่เราจะแซงรถคันหน้าเราต้องทำให้อัตราเร่งเพิ่มขึ้นมากกว่ารถคันหน้าที่เราจะแซง เราจึงจะสามารถแซงรถคันหน้าพ้น



      เมื่อพูดถึงจรวด เราหมายถึงอุปกรณ์สำหรับสร้างแรงขับดันเท่านั้น หน้าที่ของจรวดคือ การนำยานอวกาศ ดาวเทียม หรืออุปกรณ์ประเภทอื่นขึ้นสู่อวกาศ แรงโน้มถ่วง (Gravity) ของโลก ณ พื้นผิวโลกมีความเร่งเท่ากับ 9.8 เมตร/วินาที 2 ดังนั้นจรวดจะต้องมีแรงขับเคลื่อนสูงมาก เพื่อเอาชนะแรงโน้มถ่วงของโลก